

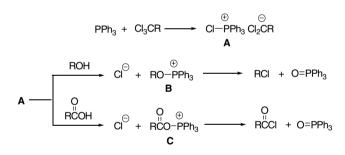
Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 223-226

Reactivity of chlorinating agents/PPh₃ for the chlorination of alcohols and carboxylic acids: a comparative study

Wanchai Pluempanupat,^a Oraphin Chantarasriwong,^a Piyada Taboonpong,^a Doo Ok Jang^{b,*} and Warinthorn Chavasiri^{a,*}


^aNatural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand ^bDepartment of Chemistry, Yonsei University, Wonju 220-710, Republic of Korea

Received 30 September 2006; revised 28 October 2006; accepted 9 November 2006

Abstract—The reactivity of chlorinating agents was examined with the aid of ¹H NMR using competitive reactions between selected chlorinating agents and CBr₄ towards alcohols and carboxylic acids. The reactivity was greatly dependent on the type of substituent on the chlorinating agents. COCCl₃ and CN substituted trichloromethyl groups enhanced the reactivity of the chlorinating agent with PPh₃ for the chlorination of alcohols and carboxylic acids. © 2006 Elsevier Ltd. All rights reserved.

Alkyl chlorides and acid chlorides are generally utilized as both synthetically useful intermediates and valuable end products in chemical industries and pharmaceutical science.^{1,2} These compounds are prepared by the reaction of alcohols and carboxylic acids with common reagents such as SOCl₂ and (COCl)₂.³ However, such protocols cannot be applied to acid-sensitive compounds due to the vigorous conditions and the formation of strong acid (HCl) during the process. One applicable method involves the use of PPh₃ and a chlorinating agent (Cl₃CR, R = Cl, CCl₃, COCCl₃, CN or CONH₂).⁴⁻⁶ These coupling reagents are important since the chlorination of alcohols and carboxylic acids could be performed efficiently under mild and acid-free conditions to afford the desired alkyl and acid chlorides in high to excellent yields.

The conversion of alcohols and carboxylic acids into the corresponding chlorides with various coupling reagents proceeded via a similar mechanism (Scheme 1).^{6,7} PPh₃ reacts with Cl₃CR to give an intermediate A which subsequently reacts with alcohols or carboxylic acids yielding an alkoxyphosphonium salt (**B** or **C**) which then transforms to the corresponding chlorides by S_N2 displacement.

Scheme 1. General mechanism.

We have recently explored the effect of various chlorinating agents on the chlorination of alcohols and carboxylic acids and have also introduced Cl₃CCONH₂ as another versatile chlorinating agent.⁶ The difference in reactivity of these reagents under optimized conditions could be observed. For example, the chlorination of a carboxylic acid using Cl₃CCN/PPh₃ smoothly proceeded at room temperature while Cl₃CCONH₂/PPh₃ required reflux in CH₂Cl₂. In addition, Cl₃CCN was a more efficient reagent for the conversion of sulfonic acids to sulfonyl chlorides under the same conditions.⁸ Presumably, the type of electron-withdrawing group on the chlorinating agents could affect the reactivity.

The reactivity of these reagents has nevertheless not yet been thoroughly examined. We report herein a relative

Keywords: Chlorinating agent; PPh₃; Alcohol; Carboxylic acid.

^{*} Corresponding authors. Tel.: +66 2 2187625; fax: +66 2 2187598 (W.C.); e-mail: warintho@yahoo.com

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.11.060

reactivity study of various chlorinating agents towards the chlorination of alcohols and carboxylic acids.

The reactivity of various chlorinating agents was investigated using a competitive reaction between a reference compound (CBr₄) and various chlorinating agents towards 2-phenylethanol (Table 1). The reactivity of selected chlorinating agents was rationalized by the ratio of the yield obtained of 2-phenylethyl chloride (1) and 2-phenylethyl bromide (2).

The ratio of 1 and 2 was calculated by ¹H NMR, utilizing toluene as an internal standard (Fig. 1). The

spectrum displayed two triplet signals for the halide substituted methylene protons at $\delta_{\rm H}$ 3.62 and 3.47, respectively.

In the absence of chlorinating agent, **2** was obtained as the sole product in high yield (entry 1). No reactivity was observed when using chlorinating agents containing an alkyl group or another Cl atom (CCl₄) on the Cl₃C– group under the specified conditions (entries 2–4). The reactivity of Cl₃CCONH₂ was comparatively similar to those of Cl₃CCCl₃, Cl₃CCO₂Et, Cl₃CCO₂Pr and Cl₃CCONHPh (entries 5–9). On the other hand, both Cl₃CCOCCl₃ and Cl₃CCN, bearing a strong electron-

•	•	0	0		*	•
				PPh ₃ (1.5 equiv)		

Table 1. Reactivity comparison of chlorinating agents on the chlorination of 2-phenylethanol

	Ph,	CBr ₄ (0.75 equiv) Chlorinating agent (0.75 e	equiv)	er + Ph	
	ОН	CH ₂ Cl ₂ , RT, 15 min		Cl + Br	
Entry	Chlorinating agent	Yield ^a	(%)	Ratio of 1/2	Reactivity ^b
		1	2		
1	None	0	69	_	
2	CCl ₄	0	70	_	
3	Cl ₃ CCH ₂ OH	0	57		_
4	CH ₃ CO ₂ CH ₂ CCl ₃	0	62	_	
5	Cl ₃ CCCl ₃	23	76	0.30	1.07
6	Cl ₃ CCO ₂ Et	26	73	0.36	1.29
7	$Cl_3CCO_2^i Pr$	27	73	0.37	1.32
8	Cl ₃ CCONH ₂	21	76	0.28	1
9	Cl ₃ CCONHPh	14	70	0.20	0.71
10	Cl ₃ CCOCCl ₃	70	24	2.92	10.43
11	Cl ₃ CCN	65	32	2.03	7.25

^a The yield was determined based on ¹H NMR integration.

^b Based on Cl₃CCONH₂.

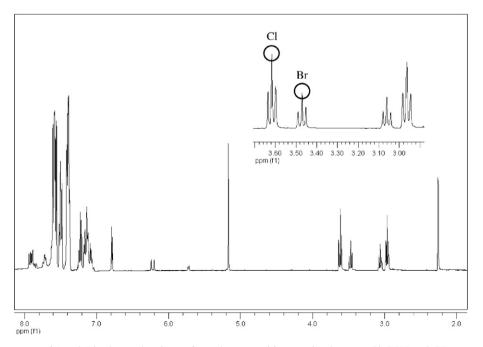


Figure 1. ¹H NMR spectrum of 1 and 2 in the crude mixture from the competitive reaction between Cl₃CCN and CBr₄.

withdrawing group, showed significantly higher reactivity, 10.43- and 7.25-fold, over Cl_3CCONH_2 (entries 10 and 11).

The prominent reactivity of $Cl_3CCOCCl_3$ and Cl_3CCN was confirmed using another experiment (Table 2). Selected chlorinating agents coupled with PPh₃ were allowed to react with 2-phenylethanol to produce **1** within 5 min. The mixture was then treated with CBr₄ to transform the remaining alcohol into **2**. If the chlorinating agent selected was reactive, it would afford **1** in high yields before addition of CBr₄ to yield **2**. Interestingly, $Cl_3CCOCCl_3$ and Cl_3CCN could still produce **1** in high yields compared with Cl_3CCONH_2 (entries 2–4). This clearly indicated that these reagents possessed high reactivity which was in good agreement with prior observations.

Furthermore, the reagents bearing electron-withdrawing groups were also investigated in a competitive reaction with diphenylacetic acid under the same conditions (Table 3). Similar levels of reactivity were observed in the cases of Cl_3CCONH_2 , Cl_3CCCl_3 and Cl_3CCO_2Et being 1, 0.73 and 0.69, respectively (entries 2–4).

Cl₃CCOCCl₃ and Cl₃CCN still exhibited the highest levels of reactivity (entries 5 and 6).

It should be pointed out here that Cl_3CCN displayed higher reactivity than $Cl_3CCOCCl_3$ in the case of diphenylacetic acid. On the other hand, in the case of 2-phenylethanol, $Cl_3CCOCCl_3$ showed higher reactivity than Cl_3CCN .

Considering the reactivity of the chlorinating agents on the formation of alkyl chlorides and acid chlorides, chlorinating agents possessing strong electron-withdrawing groups such as COCCl₃ and CN showed the highest reactivity. This postulation can be used as a fundamental concept for the development of new efficient chlorinating agents or as a guideline to optimize suitable conditions.

A typical experimental procedure is as follows: To a stirred solution of 2-phenylethanol or diphenylacetic acid (0.25 mmol) and a mixture of chlorinating agent (0.188 mmol) and CBr₄ (0.188 mmol) in dry CH₂Cl₂ (0.5 mL) was added PPh₃ (0.375 mmol) at rt under an N₂ atmosphere. After 15 min, the amount of the

Table 2.	Reactivity	comparison o	f chlorinating age	nts on the	chlorination	of 2-phenylethanol
----------	------------	--------------	--------------------	------------	--------------	--------------------

	PhOH -	PPh ₃ (1.5 equiv) Chlorinating agent (0.75 equiv) CH ₂ Cl ₂ , RT, 5 min	CBr ₄ (0.75 equiv) RT, 10 min	Ph Cl + Ph Br 1 2	
Entry	Chlorinating agent	Yield ^a (%)		Ratio of 1/2	Reactivity ^b
		1	2		
1	None	0	75	_	_
2	Cl ₃ CCONH ₂	21	67	0.31	1
3	Cl ₃ CCOCCl ₃	97	0		
4	Cl ₃ CCN	76	22	3.45	11.13

^a The yield was determined based on ¹H NMR integration.

^b Based on Cl₃CCONH₂.

Table 3. Rea	ctivity comparison	of chlorinating agents on	the chlorination of diphenylacetic acid
--------------	--------------------	---------------------------	---

	Ph O Ph OH	PPh ₃ (1.5 equiv) CBr ₄ (0.75 equiv) Chlorinating agent (0.75 equ CDCl ₃ , RT, 15 min	uiv) Ph O Ph Cl 3	+ Ph O Ph Br	
Entry	Chlorinating agent	Yield ^a (%)		Ratio of 3/4	Reactivity ^b
		3	4		
1	None	0	82		_
2	Cl ₃ CCCl ₃	50	49	1.02	0.73
3	Cl ₃ CCO ₂ Et	49	51	0.96	0.69
4	Cl ₃ CCONH ₂	49	35	1.40	1
5	Cl ₃ CCOCCl ₃	80	14	5.71	4.08
6	Cl ₃ CCN	Quant	0	—	—

^a The yield was determined based on ¹H NMR integration.

^b Based on Cl₃CCONH₂.

corresponding products in the crude mixture was determined by ¹H NMR using toluene as an internal standard.

Acknowledgements

This work was financially supported by a joint research project under the NRCT-KOSEF international cooperative program (KO 47/2547) and the Graduate school, Chulalongkorn University. One of us (D.O.J.) is also grateful for the support from CBMH.

References and notes

- (a) Francisco, G.-B.; Gregory, C. F. J. Am. Chem. Soc. 2006, 128, 5360–5361; (b) Hatakeyama, T.; Ito, S.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 14192–14193; (c) Braddock, D. C.; Peyralans, J. J.-P. Tetrahedron 2005, 61, 7233–7240; (d) Evans, W. J.; Workman, P. S. Organometallics 2005, 24, 1989–1991.
- (a) March, J. C. Advanced Organic Chemistry; John Wiley & Sons: New York, 1992; (b) Bandgar, B. P.; Patil, A. V. Tetrahedron Lett. 2005, 46, 7627–7630; (c) Kim, Y.; Ha, H.-J.; Yun, H.; Lee, B. K.; Lee, W. K. Tetrahedron 2006, 62, 8844–8849; (d) Fillon, H.; Gosmini, C.; Périchon, J. Tetrahedron 2003, 59, 8199–8202.
- (a) Comprehensive Organic Transformations, 2nd ed.; Larock, R. C., Ed.; Wiley-VCH: New York, 1999; pp 689–702; (b) Copenhaver, J. E.; Whaley, A. M. In Organic Syntheses; Wiley and Sons: New York, 1941; Vol. 1, pp 144–145; (c) Caserio, F. C.; Dennis, G. E.; Dewolfe, R. H.; Young, W. G. J. Am. Chem. Soc. 1955, 77, 4182–4783; (d) Ireland, R. E.; Norbeck, D. W.; Mandel, G. S.; Mandel, N. S. J. Am. Chem. Soc. 1985, 107, 3285–3294; (e) Carpino, L.

A.; Cohen, B.; Stephens, K. E., Jr.; Sadet-Aalaee, S. Y.; Langridge, D. C. *J. Org. Chem.* **1986**, *51*, 3732–3734; (f) Heintzelman, G. R.; Weinreb, S. M.; Parvez, M. *J. Org. Chem.* **1996**, *61*, 4594–4599.

- (a) Susan, D. T.; Joyce, T. D. J. Org. Chem. 1987, 52, 4999– 5003; (b) Downie, I. M.; Holmes, J. B. Chem. Ind. 1966, 900–901; (c) Hooz, J.; Gilani, S. S. H. Can. J. Chem. 1968, 46, 86–87; (d) Bringmann, G.; Schneider, S. Synthesis 1983, 139–141; (e) Magid, R. M.; Talley, B. G.; Souther, S. K. J. Org. Chem. 1981, 46, 824–825; (f) Matveeva, E. D.; Kurts, A. L.; Yalovskaya, A. I.; Nikishova, N. G.; Bundel, Y. G. Zh. Org. Khim. 1989, 25, 652–653.
- (a) Barstow, L. E.; Hruby, V. J. J. Org. Chem. 1971, 36, 1305–1306; (b) Harrison, C. R.; Hodge, P.; Hunt, B. J.; Khoshdel, E.; Richardson, G. J. Org. Chem. 1983, 48, 3721–3728; (c) Venkataraman, K.; Wagle, D. R. Tetrahedron Lett. 1979, 32, 3037–3040; (d) Devos, A.; Remion, J.; Frisque-Hesbain, A. M.; Colens, A.; Ghosez, L. J. Chem. Soc., Chem. Commun. 1979, 24, 1180–1181; (e) Villeneuve, G. B.; Chan, T. H. Tetrahedron Lett. 1997, 38, 6489–6492; (f) Firouzabadi, H.; Iranpoor, N.; Ebrahimzadeh, F. Tetrahedron Lett. 2006, 47, 1771–1775; (g) Rodrigues, R. C. C.; Barros, I. M. A.; Lima, E. L. S. Tetrahedron Lett. 2005, 46, 5945–5947; (h) Jang, D. O.; Park, D. J.; Kim, J. Tetrahedron Lett. 1999, 40, 5323–5326; (i) Jang, D. O.; Cho, D. H.; Kim, J.-G. Synth. Commun. 2003, 33, 2885–2890; (j) Kim, J.; Jang, D. O. Synth. Commun. 2001, 31, 395–399.
- Pluempanupat, W.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 6821–6823.
- (a) Jones, L. A.; Sumner, C. E.; Franzus, B.; Huang, T.T.-S.; Snyder, E. I. J. Org. Chem. 1978, 43, 2821–2827;
 (b) Magid, R. M.; Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem. 1979, 44, 359–363; (c) Lee, J. B. J. Am. Chem. Soc. 1966, 88, 3440–3441.
- Chantarasriwong, O.; Jang, D. O.; Chavasiri, W. Tetrahedron Lett. 2006, 47, 7489–7492.